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Multiple chatter frequencies in milling processes
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Abstract

Analytical and experimental identifications of the chatter frequencies in milling processes are presented.
In the case of milling, there are several frequency sets arising from the vibration signals, as opposed to the
single well-defined chatter frequency of the unstable turning process. Frequency diagrams are constructed
analytically and attached to the stability charts of mechanical models of high-speed milling. The
corresponding quasiperiodic solutions of the governing time-periodic delay-differential equations are also
identified with some milling experiments in the case of highly intermittent cutting.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The history of machine tool chatter goes back to almost 100 years, when Taylor [1] described
machine tool chatter as the most obscure and delicate of all problems facing the machinist. After
the extensive work of Tlusty et al. [2] and Tobias [3], the so-called regenerative effect has become
the most commonly accepted explanation for machine tool chatter [4–7]. This effect is related to
the cutting force variation due to the wavy work-piece surface cut during the previous revolution.
The corresponding mathematical models are delay-differential equations (DDE). Stability
properties can be predicted through the investigation of these DDEs [8,9]. The identification of
the resulting vibrations can effectively be supported by frequency analysis of the chatter signal
[10–12]. The stability charts published in the specialist literature are almost always accompanied
by frequency diagrams that represent the chatter frequencies at the loss of stability. The reason for
this custom is that these frequencies can be identified precisely experimentally and so this is a
direct way to verify theoretical models and predictions.
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For the simplest model of turning, the governing equation of motion is an autonomous DDE
with a corresponding infinite dimensional state space. This fact implies the existence of an infinite
number of characteristic roots, most of them having negative real parts referring to damped
components of the vibration signals. There may be some finite number of characteristic roots that
have positive real parts. Each of those roots which is pure imaginary corresponds to a single well-
defined vibration frequency. For turning, these critical chatter frequencies are usually 0–15%
above the well-separated lowest (or single) natural frequency of the machine tool structure [8].
The study of non-linear phenomena in the cutting process showed that these chatter frequencies
are related to unstable periodic motions about stable stationary cutting, i.e., a so-called subcritical
Hopf bifurcation occurs, as it was proved experimentally by Shi and Tobias [13] and analytically
by St!ep!an and Kalm!ar-Nagy [14].
The model of the milling process is more complex. The tooth pass excitation effect results in a

parametric excitation of the system, and the governing equation of motion is a time periodic
DDE. These systems can be investigated by the extended Floquet theory of DDEs [15–17].
A time periodic DDE also has an infinite dimensional state space, but characteristic multipliers
are defined instead of characteristic roots. Most of the infinite number of characteristic multipliers
are located within the open unit disc of the complex plane referring to damped oscillation
components, and only a finite number of multipliers can have a magnitude greater than 1. The
critical multipliers are located on the unit circle and each of them refers to an infinite series of
vibration frequencies.
Several analytical methods were developed to determine the stability properties of the milling

process [18–23]. Numerical simulation may also serve to provide a satisfactory result for this
purpose [24,25]. The analytical investigations lead to the realization of new bifurcation
phenomena. In addition to Hopf bifurcation, period doubling bifurcation is also a typical way
of stability loss in milling processes, as it was shown analytically by Davies et al. [21], Insperger
and St!ep!an [26], Corpus and Endres [27], Bayly et al. [22] and experimentally by Davies et al. [21],
Bayly et al. [22]. The non-linear analysis of St!ep!an and Szalai [28] showed that this period
doubling bifurcation is subcritical.
In spite of all these research efforts, the identification of the critical chatter frequencies at the

loss of stability is not a trivial task either experimentally or theoretically. The power spectra of the
signals show several peaks of complicated structure. Some of them refer to the tooth pass
excitation effect, others refer to the regenerative effect and the natural frequency of the tool also
appears. In the subsequent Sections, a clear picture is given about these frequencies arising in
chatter during the milling process.

2. Mechanical model

The mechanical model of the milling process can be seen in Fig. 1. The mass m of the tool, the
damping coefficient c and the spring stiffness k can be determined via the modal analysis of the
machine tool. x is the displacement of the centre of the tool relative to the workpiece. The
structure is assumed to be flexible in the x direction only. This reduces the model to single degree
of freedom (s.d.o.f.). This s.d.o.f. model is appropriate, for example, when a thin-walled
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workpiece is the most flexible part of the structure. In this case, the workpiece is likely to be
asymmetric and compliant in one direction while rigid in the orthogonal direction.
Assume the prescribed feed motion is uniform with a constant speed v of the tool. According to

Newton’s law, the equation of motion reads

m .xðtÞ ¼ �Fx þ kðvt � xðtÞÞ þ cðv � ’xðtÞÞ: ð1Þ

To determine the cutting force Fx; further analysis of the cutting process is needed. The tangential
component of the cutting force acting on an active tooth (number j) can be approximated by

Fjt ¼ Kwðf sin jjÞ
xF ; ð2Þ

where K is the cutting coefficient, w is the depth of cut, f is the feed per tooth and jj denotes the
angular position of the tool. The exponent xF is a small constant. xF ¼ 0:8 is a typical value for
this parameter [29]. The normal component of the cutting force is usually estimated as [29]

Fjn ¼ 0:3Fjt: ð3Þ

Recently, Halley [30] also verified this formula experimentally. The x component of the cutting
force depends on the angular position of the tool as it can be seen in Fig. 2:

Fjx ¼ gjðtÞðFjt cosjj þ Fjn sin jjÞ: ð4Þ

Here, gjðtÞ is a screen function [31]; it is equal to 1, if the jth tooth is active and 0 if it is not.

Fig. 1. Regenerative mechanical model for milling.

Fig. 2. Cutting force components.
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Let the spindle speed of the tool be denoted by O (r.p.m.), so the tooth pass period is t ¼
60=ðzOÞ (s), where z is the number of the teeth. The feed is equal to the difference of the present
and the delayed position of the tool, i.e., f ¼ xðtÞ � xðt � tÞ: The angular position of each tooth
depends on the time as follows: jj ¼ Ot þ jW; where W ¼ 2p=z: Consequently, the x component of
the cutting force acting on the tool is given by the sum of Fjx (see Eq. (4)) for all j: Introducing the
t-periodic function qðtÞ; the excitation force in Eq. (1) reads

Fx ¼ wqðtÞðxðtÞ � xðt � tÞÞxF ; ð5Þ

where

qðtÞ ¼ K
Xz

j¼1

gjðtÞ sin
xF ðOt þ jWÞðcosðOt þ jWÞ þ 0:3 sinðOt þ jWÞÞ

 !
: ð6Þ

Thus, the equation of motion is the following non-autonomous non-linear delay differential
equation

m .xðtÞ þ c ’xðtÞ þ kxðtÞ ¼ �wqðtÞðxðtÞ � xðt � tÞÞxF þ kvt þ cv: ð7Þ

Note that the time period of qðtÞ is equal to the time delay t:

3. Linearization about the unperturbed motion

Assume the tool motion in the form

xðtÞ ¼ vt þ xpðtÞ þ xðtÞ; ð8Þ

where vt is the linear feed motion, xpðtÞ ¼ xpðt þ tÞ is a t-periodic motion that can also be
considered as the unperturbed, or ideal tool motion when no self-excited vibrations arise, and xðtÞ
is the perturbation (see Fig. 1). Substitute Eq. (8) into Eq. (7) to get

m .xpðtÞ þ c ’xpðtÞ þ kxpðtÞ þ m.xðtÞ þ c’xðtÞ þ kxðtÞ ¼ �wqðtÞðvtþ xðtÞ � xðt � tÞÞxF : ð9Þ

In the ideal case, xðtÞ � 0 and the tool moves according to xðtÞ ¼ vt þ xpðtÞ: This case gives an
ordinary differential equation for xp as

m .xpðtÞ þ c ’xpðtÞ þ kxpðtÞ ¼ �wðvtÞxF qðtÞ: ð10Þ

Since this is a linear system with t-periodic excitation, it has a t periodic solution, namely, the
particular one. This proves the existence of the t-periodic function xpðtÞ and verifies Eq. (8).
Furthermore, it can be seen that xpðtÞ has the same harmonics as the excitation qðtÞ: In general,
this means that all the higher harmonics of the basic frequency 2p=t appear in xpðtÞ:
For linear stability analysis, the variational system of Eq. (7) is determined about the combined

linear and periodic motion vt þ xpðtÞ: Expand the non-linear term in Eq. (9) into Taylor series
with respect to x and neglect the higher order terms to get

m .xpðtÞ þ c ’xpðtÞ þ kxpðtÞ þ m.xðtÞ þ c’xðtÞ þ kxðtÞ

¼ �wðvtÞxF qðtÞ � wxF ðvtÞ
xF�1qðtÞðxðtÞ � xðt � tÞÞ: ð11Þ
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Using Eqs. (10) and (11), a linear time periodic DDE is obtained for x as

m.xðtÞ þ c’xðtÞ þ kxðtÞ ¼ �whðtÞðxðtÞ � xðt � tÞÞ; ð12Þ

where hðtÞ ¼ xF ðvtÞ
xF�1qðtÞ is the specific force variation.

Eq. (12) is considered as a standard linear DDE model of the milling process.

4. Frequencies during chatter

Chatter arises if the linear Eq. (12) loses stability or there is resonance in Eq. (10). Resonance
can easily be described by the ratio of the natural frequency of the machine tool structure and the
exciting frequency. This resonant case is not considered here, and only the self-excited chatter
related to the loss of stability considered in Eq. (12) is investigated.
The stability properties of Eq. (12) are determined by the infinite number of characteristic

multipliers, as explained in the Section 1, by the extended Floquet theory of DDEs. If m ¼ elt is a
characteristic multiplier of Eq. (12), then there exists a solution in the form

xðtÞ ¼ pðtÞelt þ %pðtÞe
%lt; ð13Þ

where pðtÞ ¼ pðt þ tÞ is t-periodic function, l is the so-called characteristic exponent and bar
denotes complex conjugates. Eq. (12) is asymptotically stable, if and only if, all the characteristic
multipliers are in modulus less than one; in other words, if all characteristic exponents have
negative real part.
The stability analysis can be based on the determination of the relevant characteristic

multiplier. There are several approximation methods to carry out this calculation [26,22,32]. The
vibration frequencies corresponding to the relevant characteristic multiplier can be determined in
the following way.
If Eq. (12) is at the border of stability, then there is at least one characteristic multiplier (either

one real, or one complex pair) with a modulus of one. All of the other infinite number of
characteristic multipliers have moduli less than one, so they are not important for chatter
frequency analysis.
The critical characteristic multipliers can be located in three ways:

1. They are a complex pair located on the unit circle (jmj ¼ 1 and j %mj ¼ 1). This case is
topologically equivalent to the Hopf bifurcation of autonomous systems and called a secondary
Hopf or Naimark–Sacker bifurcation.

2. m ¼ 1: The associated bifurcation is topologically equivalent to the saddle-node bifurcation of
autonomous systems and is called a period one bifurcation.

3. m ¼ �1: There is no topologically equivalent type of bifurcation for autonomous systems. This
case is called period two, period doubling, or flip bifurcation.

It can easily be seen that the m ¼ 1 case cannot arise in Eq. (12) [21,23].
For a given jmj ¼ 1; l ¼ io is pure imaginary, where o ¼ ðln mÞ=t: Essentially, the chatter

frequencies are assigned by o: Since the complex exponential function is periodic, the logarithmic
function is not unique in the plane of complex numbers. This raises the possibility of multiple
chatter frequencies. To give a clear view of the resulting frequencies, Eq. (13) must be analyzed.

T. Insperger et al. / Journal of Sound and Vibration 262 (2003) 333–345 337



For the secondary Hopf case, the characteristic exponents are also a complex pair. It is possible
to substitute l ¼ io into Eq. (13), expand pðtÞ into Fourier series and use trigonometrical
transformations. Then Eq. (13) can be written in the form

xðtÞ ¼
XN

n¼�N

ðCne
iðoþn2p=tÞt þ %Cne

ið�oþn2p=tÞtÞ; ð14Þ

where Cn’s are complex coefficients. This shows that the frequencies arising in the signal xðtÞ are

fH ¼ 7oþ n
2p
t

� �
½rad=s	 ¼ 7

o
2p

þ n
zO
60

� �
½Hz	; n ¼ y;�1; 0; 1;y; ð15Þ

where t is given in seconds, O in r.p.m. The index of fH refers to the secondary Hopf bifurcation.
There are an infinite number of frequencies with amplitudes corresponding to the coefficients Cn’s.
This is in accordance with the periodic property of the complex exponential function mentioned
before. Of course, only the positive values of fH have physical meaning.
For the period doubling case (m ¼ �1), the characteristic exponent is l ¼ ðlnð�1ÞÞ=t and the

frequencies can be written in the simple form of

fPD ¼
p
t
þ n

2p
t

� �
½rad=s	 ¼

zO
30

þ n
zO
60

� �
½Hz	; n ¼ y;�1; 0; 1;y; ð16Þ

where the index of fPD refers to the period doubling bifurcation.
Either the frequency set fH or fPD shows up during chatter. If Eq. (12) is stable, then these

frequencies do not arise.

5. Other non-chatter vibration frequencies during milling

The frequencies excited during the milling operation are related to all components of xðtÞ
defined by Eq. (8). The term vt is the linear feed motion, and it does not contain any periodicity,
but the periodic motion xpðtÞ contains the following frequencies:

fTPE ¼
nzO
60

� �
½Hz	; n ¼ 1; 2;y; ð17Þ

as it was shown by Eq. (10). The index of fTPE refers to the tooth pass excitation effect.
Since the damping of machine tools is small, the transient phenomena decay slowly. This results

in another peak in the spectrum at the well-separated lowest damped natural frequency fd ¼
on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
=ð2pÞ of the machine tool structure. Here, on ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
is the angular natural frequency

and z ¼ c=ð2monÞ is the relative damping factor.
The frequencies fTPE and fd are present in the vibration signal both for stable and unstable

cutting.

6. Experimental verification

Milling tests were performed with an experimental flexure designed to mimic the s.d.o.f. system
described above. A monolithic, uni-directional flexure was machined from aluminium and
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instrumented with a single non-contact, eddy current displacement transducer as shown in Fig. 3.
Aluminium (7075-T6) test samples of width 1/4 in ð6:35 mmÞ were mounted on the flexure and
centrally milled by a 3/4-inch ð19:05 mmÞ diameter carbide end mill with a single flute (the second
flute was ground off to remove any effects due to asymmetry or runout). Feed was held constant:
vt ¼ 0:004 in ¼ 0:1016 mm:
The measured stiffness of the flexure to deflections in the x direction was k ¼ 2:2
 106 N=m: In

comparison, the values of stiffness in the orthogonal y and z directions were more than 20 times
greater than that in the x direction. The natural frequency was experimentally determined to be
fn ¼ 146:8 Hz; and the relative damping factor was z ¼ 0:0038; which corresponds to very light
damping. Consequently, the damped natural frequency of the flexure was fdEfn ¼ 146:8 Hz:
The displacement transducer output was anti-alias filtered with 500 Hz cutoff and sampled (16-

bit precision, 12 800 samples/s) with SigLab 20-22A data acquisition hardware connected to a
Toshiba Tecra 520 laptop computer. A periodic 1/rev pulse was obtained with the use of a laser
tachometer to sense a black–white transition on the rotating tool holder (see Fig. 3).
Displacement data were recorded for 15 s: The spectral analysis was performed using Hanning

window. No averaging procedures were used. The calibration of the displacement sensor was
1:303
 10�4 m=V:
Theoretical stability charts and the chatter frequencies were determined through investigation

of the characteristic multipliers calculated by the semi-discretization method [32]. The infinite
dimensional system (12) was approximated by a 22-dimensional discrete system, which resulted in
errors of less than 2% for the stability boundaries in the presented parameter domain. The
execution time of one computation with fixed parameters was 0:023 s with a 400 MHz Pentium II
processor. For the construction of the chart in Fig. 4, an 800
 200 grid was taken in the
parameter plane of spindle speed and depth of cut , and the relevant characteristic multipliers were
determined for each parameter points. In this way, the computation time of the stability chart was
about 1 h:
For the calculations, the following experimentally identified parameters were used: m ¼

2:586 kg; k ¼ 2:2
 106 N=m; c ¼ 18:13 N s=m: Based on the experimental results of Halley [30],
the cutting coefficient was chosen to the reasonable value K ¼ 1:9
 108 N=m1þxF ; with xF ¼ 0:8:
The value of xF is also confirmed in the book of Tlusty [29].

Fig. 3. Scheme of the experiment.

T. Insperger et al. / Journal of Sound and Vibration 262 (2003) 333–345 339



The relative position of the tool and the workpiece defines the specific force variation hðtÞ from
Eq. (12). The ratio of time spent cutting to not cutting is r ¼ 0:1082; as it can be seen in Fig. 5.
The theoretical stability chart and the corresponding chatter frequencies can be seen in Fig. 4.

Solid lines denote the chatter frequencies fH and fPD: Dashed lines refer to the frequencies fTPE

caused by the tooth pass excitation effect, and a dotted line denotes the damped natural frequency
fd of the flexure.
Milling tests were carried out over a specified range of speeds and axial depths of cut. The

results are presented in Fig. 6, where J denotes stable cutting, and 
 denotes unstable
operations. The experimental data correlate with the theoretical predictions gained from this
simple s.d.o.f. mechanical model. The specified parameter points A, B and C relate to constant
depth of cut w ¼ 2 mm and three different spindle speeds O ¼ 3300; 3500; and 3590 r:p:m:;
respectively. Point A is in an unstable parameter domain of Hopf type, point B is in a stable
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domain, and point C is in an unstable domain of period doubling type. The vertical lines raised
from the corresponding parameter points of the chart intersect the frequency lines in the
frequency diagram above the chart and assign the frequency sets belonging to the corresponding
vibration signal of the machine tool. The symbols J; W; & and � refer to the four different
classes of frequency sets fH ; fPD; fTPE and fd ; respectively. The same symbols also appear in Fig. 8.
The three power spectra are calculated from the three vibration signals presented in Fig. 7 in three
different forms: time history, sampled time history, and Poincar!e (or stroboscopic) map. In the
power spectra of Fig. 8, the dashed lines denote the theoretical tooth pass excitation frequency
and its higher harmonics. The symbols mentioned above help to identify all the various frequency
sets.
For parameter point A, the theory shows that the relevant characteristic multiplier is a complex

pair. The experiment confirms the theoretical expectation: the most dominant peaks in the power
spectrum show up at the frequencies fH ; fTPE and fd :
Cutting defined by parameter point B is stable, so only frequencies fTPE and fd are expected.

This is also confirmed by the measurement result.
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Fig. 6. Theoretical stability boundaries with the corresponding vibration frequencies (J—fH ;W—fPD;&—fTPE ;�—
fd ) and experimental results (J—stable cutting, 
—chatter).
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Parameter point C defines an unstable, period doubling cutting process. In this case, the most
dominant peaks in the power spectrum are at the frequencies fPD; fTPE and fd ; and clearly, it is
also confirmed by the experiments.
The transition between the secondary Hopf and the period doubling case can be followed in the

chatter frequency plots of Figs. 4 and 6. For a secondary Hopf type chatter, there are two fH-
frequencies in the neighbourhood of each fTPE-frequency, one below, and one above. As the
spindle speed is increased, the fH-frequencies move away from the fTPE-frequencies until they meet
the fH-frequencies belonging to the neighbourhood of the other nearby fTPE-frequencies, and they
meet right at the middle of two fTPE-frequencies. Above this spindle speed, the bifurcation is
period doubling: that is, the fPD-frequencies are just in midway between two nearby fTPE-
frequencies.

7. Conclusions

The dynamics of the milling process are intricate due to the infinite dimensional phase space
caused by the regenerative effect, and to the parametric excitation caused by the time-varying
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Fig. 7. Continuous time histories, 1/rev sampled signals, and Poincar!e sections for parameter points A, B and C.
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number of active teeth. Frequency analysis is also not trivial: several sets of peaks appear in the
power spectra of the vibration signals.
The analytical investigation of the governing time-periodic DDEs identifies four types of

frequency sets. The tooth pass excitation frequency together with its higher harmonics (fTPE), and
also the damped natural frequency (fd) of the tool arise for both stable and unstable milling
processes. In the unstable case, additional frequency sets occur: either Hopf type (fH) or period
doubling type (fPD) frequencies. As opposed to the chatter frequencies of turning, some of the
milling vibration frequencies may be smaller than the natural frequency of the tool. The results
were confirmed by power spectra gained via Fourier transformation of the experimental data.
In case of high-speed milling, the period doubling type loss of stability is a recently identified

mechanism of chatter in cutting processes. The clear picture of the structure of frequency
components helps to distinguish between the different types of oscillations in intermittent cutting.
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